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COMMENT 

Anderson localization on a d  = 2 triangular lattice 

Qiming Li and Philip Phillips 
Department of ‘Chemistry. Room 6-223. Massachusetts Institute of Technology, Cam- 
bridge, Massachusetts 02139, USA 

Received 21 November 1991 

AbslmcL We show in this article, by using finite size scaling, that the d = 2 triangular 
lattice does no1 exhibit an insulator-metal transition in constrast to the claim of Srivastava. 

The key prediction of the one-parameter scaling theory [l] of the Anderson transition 
is that a mobility edge exists separating extended from localized states only for d > 2. 
Although some recent models have been formulated which exhibit extended states a t  
certain energies even in 1D [Z], the central claims of the scaling theory appear to be 
intact. However, in a series of recent papers, Srivastava [3] has proposed that quite 
generally the localization properties of a random lattice are determined more by the 
underlying connectivity of the lattice rather than by the dimensionality. In particular, 
he has argued that the d = 2 triangular lattice possesses a mobility edge. His results 
are based on the obselvation that the upper limit criterion 

w, = 4Rv In( W&V) (1) 

of Abou-Chacra ef 01 [4] for the critical disorder (W,) beyond which no state is 
extended, can be used to obtain ‘nearly exact’ results if an effective connectivity (I?) 
is used. Srivastava [3] claims that the appropriate connectivity ( g )  which should be 
used in conjunction with (1) can be calculated by enumerating the self-avoiding paths 
on a random lattice that extend to infinity. Implicit in this argument is the assumption 
that ultimately only such paths contribute to the renormalized perturbation expansion 
for the self-energy. It is straightfonvard to verify that (1) has no solution for I? < 
1.36. This is particularly fortuitous because the effective connectivity of the simple 
square lattice is k = 1.35. However, because the effective connectivity increases in a 
complicated way as the number of nearest-neighbours increases, a d = Z lattice can be 
constructed for which (1) has a non-trivial solution. Srivastava [3] has shown correctly 
that the triangular lattice possesses an effectivity connectivity of 1.69. Consequently, 
on his account, the triangular lattice should exhibit an insulator-metal transition 
when the disorder is less than W, = 11.5. Hence, the triangular lattice provides a 
general counter-example to the scaling theory of localization (according to Srivastava). 
Because of the peculiar nature of this result, we have investigated the localization 
properties of the triangular lattice using the finite size scaling method [SI. From our 
studies, we show that no insulator-metal transition exists. We conclude, then, that 
dimensionality is more likely than not the key determining factor in an insulator-metal 
transition. 
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Tb investigate the localization properties of the triangular lattice, we used trans- 
fer matrix methods [5] to calculate the localization length on the standard site- 
disordered Hamiltonian. The site energies were chosen from a uniform distribution 
of width W .  A constant site-off-diagonal matrix element V = 1 was used. We calcu- 
lated the localization length of a particular eigenstate on triangularly-connected strips 
of varying widths M = 5,9,13,17,21,25,29,33,37 and 41, with disorder strengths 
of W = 3.5,4,4.5,5,5.5,6,7,8,9,10,11.5,13,14.5,16,18 and 20. The length of the 
sample was chosen to be L = 8ooO. Although some fluctuations were observed in 
our numerical simulations for samples of such size, the finite size scaling method 
still permits a differentiation between localized and extended states. Let L J M )  
represent the localization length for an infinite strip of width M. When a state is 
exponentially localized, the ratio L , ( M ) / M  is a decreasing function of M. In fact, 
Le( M) will approach some finite value when M > L,( M). On the other hand, 
when a state is extended the ratio L,( M ) / M  is an increasing function of M. The 
intermediate or critical case corresponds to Lc( M ) / M  exhibiting constant behaviour 
as M increases. Nonetheless, the two extremes are clearly distinguished by plotting 
L , ( M ) / M  versus Ad. The change in the slope of L , ( M ) / M  beyond some value of 
the disorder will signify a transition from a metal to an insulator. 

-2.0 ' 
1 10 100 

, M  
Figure 1. The w l u  of numerical simulations of L , ( M ) / M  for varying values of the 
dsorder. M is the width of the latlice; L s ( M )  i s  the localit ion length for the state 
at energr E = 2 on a triangular lattice of lcnglh 8000 and width M. 

TO remove any ambiguity from our results, we first calculated the participation 
ratio and determined the energy of the most extended state. We found that at 
E = 2, the localization length was largest regardless of the disorder. The deviation 
of this energy from E = 0 (as in the case of the square lattice) is a symptom of the 
asymmetric nature of the electronic band of the triangular lattice. For the eigenstate 
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Figure 2. The renormalized localization icnglh L , ( M ) / M  versus EIM,  where E is 
the true localization length appropriate for each value of disorder. The universal cuwe 
obtained suggesa that the triangular lallice obeys one-parameler scaling. 

at E = 2, we computed L , ( M ) / M  at the values of M stated above. The raw data 
are shown in figure 1. As is evident, the slope of L , ( M ) / M  remains negative even 
for the smallest value of the disorder W = 3.5. At the critical value of W, = 11.5 
reported by Srivastava [3], we find no evidence of an insulator-metal transition. In 
fact, a plot of the participation ratio for W = 11.5 reveals that all the states at this 
energy are well localized. A more transparent way of presenting the numerical data 
is to scale the results of each simulation by a width-independent localization length < 
that is determined strictly by the disorder. Correct implementation of this procedure 
results in a universal curve for all of the data, that is L , ( M ) / M  = f([/M) where 
f is a universal function. This procedure is certainly warranted if oneparameter 
scaling is valid. The results of this rescaling are shown in figure 2 As is evident, 
one-parameter scaling is obeyed in the triangular lattice. Furthermore, because there 
is only the localized branch, no Anderson transition occurs. As remarked earlier, 
an insulator-metal transition occurs only if two distinct branches, corresponding to 
a change of sign of the slope in L , ( M ) / M ,  appear as the disorder is varied. Our 
results support then the scaling theory of localization and not the work of Srivastava. 

The failure of the predictions of Srivastava [3] on the triangular lattice led us to 
test its validity for d = 3. For d = 3, it is well accepted that the critical disorder 
for an insulator-metal transition on a cubic lattice is W, = 16.5 [6]. 'RI investigate 
the value of the connectivity that Srivastava's theory predicts for the cubic lattice, we 
enumerated the appropriate self-avoiding walks and obtained a value of 1.43. For this 
value of the connectivity, (1) predicts an insulator-metal transition for W, = 7.7 which 
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is less than half of the established value of 16.5. We conclude then that Srivastava’s 
approach to the localization problem is not reliable in d = 3 and inconsistent with 
the scaling theory of localization in d = 2. 
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Reply by V Srivastava 

Before coming to the work of Li and Phillips [l]  we will make some general obser- 
vations about the work done so far on localization in two dimensions (zD). 

That 2D is somewhat special for localization was noted for the first time by 
Licciardello and Thouless (LT) [2]. Work in the pre-LT era-whether numerical (in- 
cluding those by Thouless and collaborators) or analytical based on the ‘renormalized 
perturbation expansion (RPE)’ using Anderson’s original tight-binding formulation 
[3]-invariably showed a delocalization-localization transition at some critical value 
of disorder, We, in ZD systcms 141. The numerical calculations of LT [2] hinted at 
the possibility of the localization lengths being very large for d = 2 leading them 
to suggest that the states in ZD systems could be ‘neither extended nor exponen- 
tially localized’. These ideas led to the scaling theory of localization [5] based on 
the renormalization-group differential recursion relation following which most people 
were convinced [6] that all states were localized for d = 3 although there remain 
questions about the single-parameter scaling theory [7], and the problem of the lo- 
calization transition in 2D for the spin-orbit scattering situation [8] remains unsolved. 

In considering numerical calculations there have been problems of varying data 
interpretation. For instance, Yoshino and Okazaki 191 showed there to be a localization 
transition in a square lattice but their data were reinterpreted by LT [2] and found 
to favour their (LT) contention [2]; Stcin and Krey [IO] initially found evidence for 
a localization transition in square and triangular lattices but later reanalysed 1111 the 
same data and found support for the scaling picture [5] .  Since the numerical works 
are on finite systems, it is hard to distinguish between the extended states and the 
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large localized 2D states. This applies equally well to the work mentioned in (41 and 
that of Li and Phillips [l]  and others who calculated the scaling functionst. 

The analytical works approach the problem from two opposite directions. The 
older WE approaches dealt with the locator perturbation series treating V ,  the overlap 
between neighbouring sites, as a perturbation ( V  << disorder, W), whereas in the 
scaling approach the perturbation theory takes W to be a perturbation (W << V). 
The aim of the work in [12] was to examine why the former method unambiguously 
gave non-zero values for W, (sometimes rather high) for d = 2 as against W, = 0 
given by the latter method which is a widely accepted result now-theoretically as well 
as experimentally. The success was partial-the apparent cause (or one of the causes) 
for the 'locator expansion' type approaches yielding high values for W, was found, but 
the calculations showed complete localization in the honeycomb and square lattices 
but not in the triangular lattice, thereby revealing an apparent strong dependence 
of localization on the connectivity constant of the given lattice. The connectivity 
dependence of localization may well be an artifact of the underlying Cayley tree 
approach since the only information about a lattice that goes into the calculation is the 
connectivity of self-avoiding walks of a certain kind in the lattice. Great significance 
should not be attached to this aspect. 

If one agrees with the use of k (explained in [12]) for the connectivity constant 
of a specially constructed trimmed Cayley tree which corresponds to a given real 
lattice, and if one has no doubts about the authenticity of the self-consistent theory 
of Abou-Chacra et a1 [4]. then one should accept the result of 1121. Indeed, there 
may be certain aspects, yet undiscovered, that may modify the b or even the whole 
approach. If these can be discovered, the gap mentioned in the previous paragraph 
could be reduced or removed. Thus the field seems quite open and new ideas within 
the framework of the locator expansion [3,4] are called for. That the scaling theory 
result for Wc in a triangular lattice does not agree with the result of this approach 
in its present form [12], as shown by Li and Phillips [I] is neither surprising nor 
unexpected. This has already been discussed at length in [12]. 

The last part of Li and Phillips [I]  paper has direct relevance to the work of [IZ]. 
They calculated h (indicated as i? in [I]) for the cubic lattice and found b cz 1.4. It 
is somewhat surprising that hcu (that is, I;  for a cubic lattice) has been found to be 
less than b,, (that is, h for a triangular lattice). Note that the coordination number, 
C, for both these lattices is 6 but Iicu (dclined in [12]) is larger than Ii,,, implying 
that on average a greater number of self-avoiding walk (SAW) trajectories are joined 
to a site in the cubic lattice than in the triangular lattice. This is a reflection of 
the fact that the degrees of freedom to move out of a site are greater in the cubic 
lattice, a 3D lattice, than in the 2D triangular lattice. Similarly, compared with the 
triangular lattice, the cubic lattice has more trajectories that converge and terminate 
on a particular site after leaving the same site and making excursions of different 
lengths. It is the SAW trajectories of the latter kind that interest us in connection 
with the calculation of b. All the SAWS in a lattice can be divided into two classes : 
indenfinitely growing or terminating at some stage. We count the latter at different 
stages-nth step, ( n  + 1)th step, etc-and calculate their conectivity, which is b. The 
argument given above indicates that k,, should result to be greater than ht,. 

t Just as L i  and Phillips [I) made deductions from l og lo (L , /M)  M ~ U S  M plots, cerlain approaches 
mentioned in [4] plot average inverse parlicipalion ratio versus disorder Cor a number of different system 
sizes 10 extrapolate lhe rcsulu Cor the infinite system. 
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'b conclude, more thinking is needed along the lines proposed in [12] to improve 
the calculation of W, within the locator expansion framework [3]. The disagreement 
of the results of [4] and [12] with those of the scaling theory [l, 5, 61 does not reflect 
that the approaches involved in the former [4, 121 are basically wrong. The work of 
[12] gives hope to the possibility that the inconsistency between the scaling approach 
and the locator expansion approches can be removed. Lastly, there seems to be a 
misunderstanding on the part of Li and Phillips [ I ]  as to what k actually represents. 
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